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Evolutionary effects in the motion of a heavy dynamically symmetrical rigid body about a lixed point in cases close to the Lagrange 
case are investigated in the non-linear formulation. Evolutionary effects are due to perturbations acting on the body, namely, a 
small displacement of the centre of mass with respect to the axis of dynamic symmetry, a perturbing moment, constant in a 
connected system of coordinates, and dissipative moments. It is shown that the presence of perturbations leads to the existence 
of “attracting” or “repulsing” resonances, which determine the evolution of the system in non-resonance parts of the motion. 
The method of integral manifolds is used for singularly perturbed systems and the method of averaging. A qualitative representation 
of possible motions of a statically stable top in the phase plane, taking a lower-order resonance into account, is given. 0 2002 
Elsevier Science Ltd. All rights reserved. 

The difficulties involved in investigating resonance phenomena in the motion of a heavy rigid body about 
a fixed point due to the action of various perturbations [l-4, etc.] is due mainly to the non-linearity of 
the equations of motion and the variability of the frequencies characterizing the motion. Below we use 
the method of integral manifolds [5-71 for an initial simplification of the system of equations of motion 
of the body. The basis of this approach is the presence in the system of dissipative moments, which 
lead to the fact that the trajectory of the system over time tends to a certain integral manifold [7]. Hence, 
the evolution of the system can be investigated by studying the behaviour of the system on an integral 
manifold. The motion over the integral manifold corresponds to the motions of a body close to 
precessional. To construct an approximate system of equations of motion of the body with respect to 
integral manifolds we use the method of separation of the motions for singularly perturbed systems 
[6, 71. On the other hand, the motion over the integral manifold in this problem is described by a 
single-frequency system, where the fact that the frequency for the initial system vanishes leads to 
a,lower-order resonance, which has the greatest effect on the motion of the body. 

Particular attention is devoted below to non-resonant regions of the motion of the system, for which 
approximate evolutionary equations are obtained. It is shown that sometimes one must construct a 
second approximation of the averaging method. In this sense, the evolutionary motions investigated 
are analogous to secondary resonance effects [8]. The method developed here has its own sources, in 
which the obtaining of quasi-static and low-frequency equations of motion of a rigid body in a resisting 
medium were considered [9, lo]. The method of averaging was used in [3,4] to investigate the motion 
of a body close to regular precession, but non-linear evolutionary resonance effects were not considered. 

1. THE EQUATIONS OF MOTION OF A RIGID BODY 

The positions of a rigid body when it rotates about a fixed point are given by .the Euler angles w, 8, cp, 
which connect a fixed system of coordinates OX,Y,Z, and a moving system of coordinates OXYZ, rotating 
together with the body. The axial moments of inertia I,, Iy and 1, correspond to a dynamically symmetrical 
body, 1, = 1, = I > I,, while the position of the centre of mass is defined by the vector Ar = Axi + Ayj 
+ Azk, specified in the system of coordinates OXYZ connected with the body. In cases close to the 
Lagrange case, we usually assume 0 c (Ax2 + Ar2)‘* 4 1 Az 1 , w h ere, without loss of generality, we can 
put Ax = 0, by choosing the position of the connected system of coordinates OXYZ in an appropriate 
way. Henceforth we will refer the value of the axial moment of inertia Z, to the value I and retain the 
previous notation. 
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In addition to the moment of the gravity force, a perturbing moment 

AM = AM,i + AMY j + AM,k 

constant in the connected system, acts on the body, as well as a small dissipative moment 

MU =@‘i+h$‘j+M~k; M~=muU~U, u=x,y,z 

where o), are the components of the angular velocity of the body in the system of coordinates OXYZ, 
and mou are constant non-positive coefficients, where, due to the symmetry of the body, mu31 = rnOY = 
m”‘. Here and henceforth all the moments relate to the quantity I. 

The equations of perturbed motion of the body about a fixed point can be written in a form convenient 
for using asymptotic methods [2,9, 111, as follows: 

Q=Mr,, ZzWz =M, 

ii=M,+F;(x,8)F,(x,0), ~=oz-oycose 

M,, =M,,sin8+M,cosCl 

MX” =Mxcosq-Mysincp, M, =M,coscp+M,sin(p 

Mz = -GAysinf3sin ‘p+ AM, + muzw, 

M, =GAycose-G&sin0coscp+AM, +m%, 

MY = GAzsinBsincp+L\M, +mway 

cow =*==F;(x,e), F;(X,e)=(Q-I,o,c0s8)/sin2e 

F,(x,e)=(Qcose-I,o,)lsin8 

(1.1) 

Here Q is the projection, referred to Z, of the kinetic moment of the body onto the vertical OZi, G is 
the modulus of the gravity force of the body, referred to Z, x = (Q, oz) is the vector of slow variables, 
0 and cp are fast variables, and the dot denotes a derivative with respect to time t. 

The moment acting in the plane of the angle of nutation 8, is represented in the form 

Here 

M, = M,q, + AM,,, (1.2) 

Mtn = -GAzsinCl (1.3) 

AM,, = GAy cos 8 cos (p + AMx cos cp - AMY sin cp + m% 

where M$, is the moment of the gravity force G corresponding to the unperturbed motion of the rigid 
body (AM = 0, M,” = M; = M,” = 0, Ay = 0) and AM,, is the perturbing moment. 

We will consider the case, similar to the Lagrange case, and we will therefore assume that 

Then, after scaling of the perturbing functions in system (1.1) we obtain 

Here 

E.X=(EX~,EX~), EX~ = M,,, EX, = M,/I, 

qx.8) = -~,9, - F;(x,eygx,e), o(x,e) = W, - F;(x,e)cose 
E. =GAycostkoscp+AMxcos~-AM,,sincp, Ef2 =m" 

(1.4) 
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In system (1.4) the small parameter E > 0 represents a small displacement of the centre of mass of 
the body with respect to the axis of dynamic symmetry (Ay), the values of the perturbing moments (AM,, 
hM,, AM,) and of the dissipative moments (mw, m”). 

2. THE EQUATIONS OF MOTION WITH RESPECT 
TO THE INTEGRAL MANIFOLD 

For a system of the form (1.2) a procedure was developed in [7] for constructing the integral manifold, 
which enables one to investigate motions taking into account the lower-order resonance of the form 
0(x, f3) = 0 occurring in the system. To do this, system (1.4) is reduced to the singularly perturbed form 

x’= P(X,cp,&W~) (2.1) 

PO;, =-F(x,e)+~*[fi(X,(P,e)+f*0el 
/.a’ = co,, cp’ = p(x.8) 

The prime denotes a derivative with respect to the slow time z = l.~; p = &, oe = 6, &x, 0) = 
@(x9 0). 

When p = 0, we obtain the following degenerate system 

x; = 0, F(x,,8,)=0, o,, =o, cp;, =p(x(J,Be) (2.2) 

To separate the motions by the method of integral manifolds and to construct the corresponding 
asymptotic solutions, it is necessary to satisfy a number of conditions [6,7], the most important of which 
are as follows: 

1) the equation F(xa, 0,) = 0 must have an isolated root 8a = v(xs), where 

$)>C, >o (2.3) 

where Ci is a certain constant; 
2) the matrix of the linear system, written with respect to the solutions of degenerate system (2.2), 

must have eigenvalues with negative real parts (see [7] for more detail). 
The condition for the roots 8s = v(xs) to exist in this problem is equivalent to the existence of stationary 

points in the Lagrange case and is certainly satisfied (see, for example, [12]). 
Condition (2.3) for system (1.1) takes the form 

g = -~~~(e,)-3~~~(e,)ctge, + 
Q* + I,$; - 21zo,Qcoseo 

sin* 8, 
>c, >o (Mf” +) 

and is always satisfied when 0 < 8a s n//2, which follows from the first expression of (1.3) (AZ > 0). 
When 7d2 < 8s < n this condition is satisfied for fairly large values of ]Q 1 and ]u] and requires 
monitoring when carrying out analytic and numerical calculations. 

The condition for the real parts of the corresponding matrix of the linear system to be negative, as 
was shown previously in [7], reduces to the existence of a dissipative moment &fi = m"' < -C2 < 0 
(C, = O(E) is a certain positive constant), which acts in the plane of the angle of nutation. The value 
of this moment determines the velocity with which the trajectory of the system approaches to an integral 
manifold [6, 73. It should be noted that, unlike the method of integral manifolds based on the results 
of the theory of singularly perturbed systems, developed by Tikhonov et al. [5], there is a modification 
of the method [6], in which a large value of the dissipative terms is not required (they can also be small 
of the order of E). 

The solution of degenerate system (2.2) does not give any interesting information on the motion with 
respect to the integral manifold since x0 = const and O. = const. To obtain interesting information we 
need to represent the solutions for the slow motion in the form of asymptotic series (for example, 
8 = e,(r) + p@(z) + p2 . ..). substitute them into system (2.1) and, using the standard procedure for 
constructing asymptotic solutions for singularly perturbed systems, determine the next terms of the series. 
By determining these solutions up to terms O(p*) ( see [7] for more detail), we obtain for system 

(2.1) 
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aF -’ ~=v+cr2f,(w+w z 9 w,=p ~x’“Jp’v’ 
t 1 2h 

(2.4) 

where v is the root of the equation E;(x, v) = 0. 
Relations (2.4), together with the differential equations for the variables x and cp, which remain at 

the same form as in system (2.1) describe the motion of the system with respect to the integral manifolds. 
For simplicity we have retained the same notation in series (2.4) as for the initial system (2.1). 

3. REDUCTION OF THE SYSTEM OF EQUATIONS OF SLOW MOTION 
TO A STANDARD SYSTEM WITH A FAST PHASE 

The motion of the system with respect to integral manifolds still remains fairly complex for analysis, 
since non-resonance sections of the motion (the phase cp rotates) and resonance sections exist, requiring 
different approaches in the investigation. Hence, we will reduce the slow-motion equations obtained 
to a system with a fast phase, bearing in mind the subsequent use of the well-developed averaging method 
to investigate it. We will first obtain the differential equations for the angle of nutation 8, by 
differentiating the first relation of (2.4) with respect to z. We obtain 

2 af; aF -1 
W=v’+p - - ( 1 avav p(x,v)+p3... (3.1) 

where the derivative v’ is defined by the differential equation F(x, v) = 0 in the form 

On the right-hand side of Eq. (3.1), we can put v = 8 without violating the approximation employed. 
The initial data for Eq. (3.1) with respect to the angle 8 must belong to integral manifold (2.4). This 

will be satisfied for any value of 9 if the variable Q is determined from the second equation of system 
(2.1) defined to terms of O(u*) rather than from the solution of the first equation of system (1.1) (here 
we have taken into account the fact that we = O(u*)). Here 

Hence, taking into account the form of the functions F andfi and solving the quadratic equation for 
Q, we obtain 

y2 sin2 8 - 
COST (3.2) 

where M;,, is the moment of M,,, defined ignoring dissipation (mW = 0). The plus sign in solution (3.2) 
corresponds to positive values of the angular velocity o,(o, > 0), while the minus sign corresponds to 
negative values (0, < 0). 

Substituting expressions (3.2) into the condition cp’ = 0, we obtain an expression for the resonance 
value of the angular velocity y 

(3.3) 

By combining the differential equations for the variables 8 (Eq. (3.1)) and the variables w, and cp 
(the second and fourth equations of (1.1)) and changing to the original time C, we obtain, in final form, 
a system with the fast phase cp, describing, up to terms O(u*) = O(E), the motion with respect to the 
integral manifold 

(awae)b= (3~~ cose-(~+I,)w,)M,-M,o, sine 

ci& =M,/I,, (b=mz -u,c0se (3.4) 
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aFltM= F’@ = -MZe +a$ +(f,o, -co+! cose)(1,0, -2cIl,cose) 

CO.+ = (Q,,2 - lzoz cosO)/sin2 0, Myn = O(E), M, = O(E) 

Representing system (3.4) in standard form, we obtain 

Jo = aY(y,cp), + = A,(Y)+~(Y,cP) 

where 

y(YJP)=(Y,JJ 

v,= -~*COS((P+(PA)+~~,2(~OLW~ tge/F(e’-mmf3sine) 

Y, =(m %ir,+A+ GAysinBsincp)lI, 

(3.5) 

m* =((m$ +(m$)x 
cosqA =-m(\ lm*, sin (PA =m~lm*, m,A=f&l, 

m2 * = j+Mx +GAy c0se-(cL?ysin2ew,,2)/c0se] 

f3 =[(l+l,)O, -3W,,$F(? Aw(y)=q -01.2 

O,~ =03,c0se=~,0,/2*0,, 0, =(@.0f14-M;nctge) 
2/2 

my. CPI = it m,, ctg e/(20,) 

Here y = (0, 0,) is the new vector of the slow variables, Y(y, cp) is a vector function, periodic in 
the phase with period 2rc, and m* and (PA are certain generalized asymmetry parameters of the rigid 
body. 

4. AVERAGED EQUATIONS FOR THE SLOW VARIABLES 

To analyse the change in the slow variables during the non-resonance parts of the motion using the 
standard procedure [13], we will determine the averaged equations of the second approximation. The 
need to use the second approximation is due to the fact that the first approximation of the averaging 
method, as is well known, does not contain singularities related to the resonances which arise in the 
system. The determination of the second approximation enables us to obtain a more complete picture 

-10 
0 30 60 8, deg 0 30 60 0, deg 

Fig. 1 
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Fig. 2 

of the motions in the system, in particular, to analyse resonance evolutionary effects. After using the 
averaging method for the slow variables of system (3.5) we obtain 

0 c, = EA; + EVA;, (6.1~) = EAP + &'A; (4.1) 

where 

4 =f mA 
4w,A, tgO 

[(AM,+GA~cos~)cos~~,+AJM,~~~~~,]- 

mA cosq,., GA, sin 8 

aa, 21,4Jl 
~~GAysinecos(PA - 

w _ 2mAa, coscp, TAM 
A2 - 

4~z%A., 
’ GAycosei g1 zAA2 &AyG2 sin28cosqA 

2 0 0 

In system (4.1) for the averaged variables, for simplicity we have retained the same notation as in 
system (3.4). A feature of the averaged equations (4.1) is the presence in the denominators of 
corresponding expressions for the frequency detuning A,, the value of which determines how close the 
trajectory is to the resonances considered. If the trajectory of the system approaches the resonance curve 
(3.3), the order of the terms on the right-hand sides of system (4.1) changes. In particular, if A0 = O(E”~) 
(the traditional quantity of the resonance zone [14]), the orders of the functions a&‘, EAy and 
s2Ai, Ed&’ become the same, which follows from the expressions derived above. Consequently, the 
smaller the value of A,,, the greater the influence of the terms of the second approximation on the 
evolution of the variables 8 and o, (the secondary resonance effect [S]). 

System (4.1) is a second-order autonomous system. Possible motions in it can be conveniently analysed 
in the phase plane (o,, 0). The results of such an analysis for a statically stable Lagrange top (0 E [0, 
7r/2]) are presented in Fig. 1 for the following initial data (we recall that G, Z,, mW and mwz are 
dimensionless quantities normalized by the axial moment of inertia I) 

G = 5m-‘s-2, I, = 0.05, I = 40 kgm2, Az = 3m, m” = - 0.0075 s-i 

Ay = 0, mot = - 0.0063 S-I, Ah4I = 0.0125 sm2, AMY = 0 (Fig. la) 

Ay = - O.O4m, mWz = 0, m, = 0, NY = - 0.0063 sm2 (Fig. lb) 



Evolutionary effects in the motion of a rigid body about a fixed point 407 

Two basically different cases of perturbed motion of the body are illustrated: when the behaviour of 
the system in the phase plane w, = w,(O) is determined solely by terms of the first approximation of 
the method of averaging (A:, A? # 0) and when A: = 0 (when mwz = 0, AMz = 0), i.e. evolutionary 
effects with respect to the variable o, are determined by the second approximation AT. 

In the first case, analysis of the first approximation (Fig. la) of the averaging method (taking 
into account the functions A;, A? only) in system (4.1) reduces to finding two singular points with 
coordinates (-M4z/~WL, 0) and (-AMz/mwz, n/2) in the (oz, 8) p ane, 1 where the first of these is stable 
and the second is unstable; in fact, the phase portrait (Fig. la) in this case corresponds to the motion 
of a symmetrical body. In the second case, the phase portrait of this system is considerably changed: 
the resonance curves o:(O) (3.3) (shown in Fig. lb by the thick curve) divide the plane into three regions, 
and the evolution of the variables w, and 8 is determined by the fact that the initial data o,(O) and e(O) 
belong to the corresponding region and by the sign of the product AyAM+, characterizing the asymmetry 
of the body. If AyAM, > 0, the positive branch of the resonance curve o,(e) > 0 is stable and the phase 
portraits converge to it. If AyhM, < 0, the negative branch (o:(O) < 0) is stable. When Ay = e, = 0 
the evolutionary motions of the system are determined by the first approximation of the averaging 
method (Fig. la), since A!,&’ = 0. 

For large angles of nutation (8 > 70”) close to the resonance curve w:(e), it is possible for singular 
points to occur, the stability (or instability) of which is identical with the stability (or instability) of the 
corresponding branch (positive or negative) of the resonance curve. The occurrence of singular points 
close to the resonance values (the dash-dot curves) is illustrated in Fig. 2 for 8 > 30” and > 70” (the 
continuous and dashed curves c& = c&(y) respectively) and is explained by the presence in the expression 
for the functions A: of denominators which depend on the squares of the resonance relations of the 
frequencies A:. 

Hence, during the time when Ay, hM, # 0 the phase trajectory tends to one of the resonance curves 
and the further evolution of the system is determined by the behaviour of the system in the resonance 
region. 

A detailed analysis of the motion of the system in the resonance region is outside the scope of 
this paper, since it requires another averaging procedure. However, we must note here that if 
the resonance is “internally” stable [8], the trajectory of the system, which remaining close to the 
resonance curve, is shifted along it in the direction of the singular point 8 = rc/2, and tends to 
it asymptotically. A similar trajectory, shown in Fig. l(b) by the thin curve, is obtained from system 
(3.5). Calculations were also carried out from the initial equations, which confirm the correctness of 
these results. 

Hence, the approach described permits us to investigate fairly fully the pattern of resonance 
evolutionary effects along non-resonance parts of the motion of a rigid body in a case similar to the 
Lagrange case, which enables it to be used in a number of mechanics problems, for example, in the 
problem of the motion of an asymmetric body in a resisting medium. 
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